XMM Observations of MCG-6-30-15

Christopher Stephen Reynolds (UMD-Astronomy)

Credits

- Project PI : Joern Wilms
- US lead: Chris Reynolds
- Also
 - Mitchell Begelman
 - James Reeves
 - Silvano Molendi
 - Ruediger Staubert
 - ◆ Eckhard Kendziorra

Outline

- Biography of MCG-6-30-15
- Our XMM observations
- Evidence for BH spin extraction
- Spin extraction mechanisms
- Open questions

Intro to MCG-6-30-15

- Unremarkable S0 galaxy in Centaurus (z=0.008)
- Hosts Seyfert 1.2 nucleus
- Favourite AGN for x-ray study
 - ◆ Bright (few×10⁻¹¹erg/s/cm²)
 - ◆ Rapidly variable
- Become test-bed for X-ray studies of relativistic accretion disks

X-ray reflection...

... and accretion disks

- Doppler shifts and gravitational redshifts broaden and skew line
 - ◆ First seen in MCG-6-30-15 (Tanaka et al. 1995)
 - Generic feature in Seyfert 1 nuclei (Nandra et al. 1997)

Iwasawa et al. (1996)

Black hole spin?

- "Deep minimum" state found in ASCA data on MCG-6-30-15
 - Flux drops by factor 2
 - ◆ Line becomes broader
 - Line becomes stronger
- Need line emission from inside of 6GM/c²
- Implies spinning hole?

- Radius of marginal stability
- Outside Keplerian accretion disk, slow inflow
- Inside material rapidly plunges into hole

Our XMM observation

- 100ks observation of MCG-6-30-15
- Caught object in "deep minimum"
- In this talk, will present
 - ◆ EPIC-PN data
 - ◆ (MOS slightly piled-up, but agrees)
 - ◆ Time-averaged spectrum
- Still need to look at detailed variability

Lee et al. (2001)

Lee et al. (2001)

- Construct empirical WA model (including line emission)
- Isolate spectral features from disk
- First cut make a "fluxed line" profile
- Compare with ASCA...

Compared to time-averaged line profile from ASCA

Compared to "deep minimum" line profile from ASCA

Detailed spectral models

- Powerlaw (Comptonized) continuum
- Warm absorption (empirical RGS fit)
- Reflection from ionized disk (Magdziarz & Zdziarski 1995)
- Iron fluorescence
- Weak recombination line emission
- Relativistic smearing applied to lines

 AND reflection continuum

Basic result

- Require extreme degree of broadening!
- Implies very centrally concentrated X-ray source
- $F(r)\sim r^{-\beta}$, 4.5< β <6.0
- R_{in} <2.0 GM/c²

Robustness

- General result robust to
 - ◆ Calibration issues (seen in MOS)
 - Reasonable continuum curvature
 - Assumed inclination
 - Compton broadening of the line

The trouble with "pure" accretion disks

- Standard disk model
 - ◆ Page, Novikov, Thorne
 - Thin, radiatively-efficient, α-model
 - Zero-torque boundary at RMS
 - ◆ Radiated power zero at RMS, peaks, then tends to r⁻³
- Not concentrated enough to explain these data!

Black Hole Spin Extraction Hypothesis

- Black hole spin is only other source of energy in the system
- Hypothesis
 - ◆ Inner accretion disk is torqued by the black hole spin – mechanical work is done on inner disk
 - Result is a very centrally concentrated energy source

I: Spin extraction via the plunging region

- Gammie (1999), Krolik (1999), Agol & Krolik (2000)
- Suppose magnetic fields couple plunging region to rest of disk
 - Can place inner part of accretion flow onto negative-energy "counter-rotating" orbits
 - Accretion diminishes black hole energy – energy extracted from BH
 - "Penrose effect" (Penrose 1969)

- Numerical MHD simulations
 - Hawley (2000), Krolik & Hawley (2001), Armitage, Reynolds & Chiang (2001)
 - Non-relativistic simulations in Pseudo-Newtonian potential

$$\Phi = -\frac{GM}{r - r_{Sch}}$$

 Support possibility of magnetic couple between plunging region and disk

Reynolds & Armitage (2001)

II: Spin extraction by direct coupling to BH

- Blandford-Znajek (1977)
 - Externally imposed magnetic field will lead to extraction of spin energy from BH
 - "Virtual" Penrose effect
- Magnetic field linking BH to disk
 - Extracted energy deposited in disk
 - Will then be radiated (after accounting for viscous transport)

NASA/ Dana Berry

Open questions

- Nature of variability?
- Scenario I
 - Spin-component always present
 - Disk fades during "deep minimum" for unspecified reasons
- Scenario II
 - Trade-off between spin-component and disk-component
 - Sporadic torquing of inner disk accompanied by halting of accretion flow

- Radio-loud/radio-quiet dichotomy
 - MCG-6-30-15 is radio quiet, but seems to possess rapidly spinning BH
 - What other factors are relevant for RL/RQ dichotomy?
 - Need more XMM data on variety of RL and RQ objects...
- The nature of the black hole magnetosphere
 - What is strength and configuration of field threading BH?
 - Do magnetic instabilities give rise to some of the variability?
 - What is the governing physics?

Conclusions

- New XMM data for MCG-6-30-15 find very broad disk reprocessing features
- Hypothesize that the inner accretion disk is being torqued by the blake hole spin
 - Directly via BZ mechanism
 - Indirectly via plunging region
- Open issues
 - Counter-example to simple spinhypothesis for RL/RQ dichotomy
 - What is nature of "deep minimum"?